MEASURED BY HAND POSITIONED BY IRIS

1. Part position is measured and marked by hand, using workpiece edges and perimeters – an inaccurate and time-consuming process.
 Part position is taken directly from CAD data and projected onto the workpiece for exact as-designed placement.

2. Placement is usually accurate when measured in straight lines on flat surfaces. Contours and curve surfaces introduce errors and invite misalignment.
 Iris is designed using state-of-the-art 3D technology and laser-accurate software that pinpoints locations on complex surface shapes.

3. Fitting requires skilled workers who are more costly and difficult to find.
 Iris' user interface requires no prior experience. Visual cues guide operators through each action and projected text indicators identify part numbers for accuracy.

4. When assembly is in progress, determining the accuracy of part alignment is difficult and misaligned welded parts are always costly to fix.
 Iris examines parts for positional accuracy and provides instant feedback to eliminate work-in-process errors.

Accelerate and Error Proof the Assembly Process by Eliminating Manual Measuring, Marking and Fitting

Part position is measured and marked by hand, using workpiece edges and perimeters. Placement is usually accurate when measured in straight lines on flat surfaces. Contours and curve surfaces introduce errors and invite misalignment. Fitting requires skilled workers who are more costly and difficult to find. When assembly is in progress, determining the accuracy of part alignment is difficult and misaligned welded parts are always costly to fix.

Part position is taken directly from CAD data and projected onto the workpiece for exact as-designed placement. Iris is designed using state-of-the-art 3D technology and laser-accurate software that pinpoints locations on complex surface shapes. Iris' user interface requires no prior experience. Visual cues guide operators through each action and projected text indicators identify part numbers for accuracy. Iris examines parts for positional accuracy and provides instant feedback to eliminate work-in-process errors.
SPATIAL POSITIONING SYSTEM

Breakthrough Technology for Assembly Processes

VIRTEK VISION INTERNATIONAL, INC.
785 Bridge Street
Waterloo, Ontario N2V 2E1
CANADA

T +1 519 746 7190
F +1 519 746 3383
www.virtek.ca

Accelerate and Error Proof the Assembly Process by Eliminating Manual Measuring, Marking and Fitting

MEASURED BY HAND

Part position is measured and marked by hand, using workpiece edges and perimeters. – an inexact and time-consuming process.

Placement is usually accurate when measured in straight lines on flat surfaces. Contours and curve surfaces introduce error and invite misalignment.

Fitting requires skilled workers who are more costly and difficult to find.

When assembly is in progress, determining the accuracy of part alignment is difficult and misaligned welded parts are always costly to fix.

POSITIONED BY IRIS

Part position is taken directly from CAD data and projected onto the workpiece for exact as-designed placement.

Iris has been shown to accelerate assembly by as much as 60 percent, depending on the size and complexity of the part.

Iris is designed using state-of-the-art 3D technology and laser-accurate software that pinpoints locations on complex surface shapes.

Iris’ user interface requires no prior experience. Visual cues guide operators through each action and projected text indicators identify part numbers for accuracy.

Iris examines parts for positional accuracy and provides instant feedback to eliminate work-in-process errors.

Part position is taken directly from CAD data and projected onto the workpiece for exact as-designed placement.

Iris has been shown to accelerate assembly by as much as 60 percent, depending on the size and complexity of the part.

Iris is designed using state-of-the-art 3D technology and laser-accurate software that pinpoints locations on complex surface shapes.

Iris’ user interface requires no prior experience. Visual cues guide operators through each action and projected text indicators identify part numbers for accuracy.

Iris examines parts for positional accuracy and provides instant feedback to eliminate work-in-process errors.
SPECIFICATIONS

SPATIAL LOCATOR
- Length: 1210 mm (48 in.)
- Diameter: 100 mm (4 in.)
- Weight: 6.5 kg (14 lbs.)
- Range: < 6 m (20 ft.)
- Resolution: 0.125 mm (0.005 in.)
- Power: 115-240 VAC 50/60 Hz
- Field of View: 70 degrees

LASER PROJECTOR
- Length: 622 mm (24.5 in.)
- Height: 330 mm (13 in.)
- Depth: 175 mm (7 in.)
- Range: < 12 m (39 ft.)
- Projection Angle: 60 degrees
- Accuracy: < 0.38 mm @ 6 m (0.014 in. @ 20 ft.), < 0.76 mm @ 12 m (0.030 in. @ 39 ft.)
- Power: 115-240 VAC 50/60 Hz

IRIS SOFTWARE AND USER INTERFACE
- Controller: 32 and 64 bit compatible
- OS: Windows
- Interface: Keyboard, remote and probe
- Interaction: Controlled, guided processes

VIRTEK VISION INTERNATIONAL INC.
785 Bridge Street, Waterloo, Ontario N2V 2K1 Canada
T +1 519 746 7190 F +1 519 746 3383
www.virtek.ca

ISO 9001 certified since 2008

Eliminate Production Expense and Delays Caused by Using Templates

POSITIONED USING TEMPLATES

1. Design changes require new templates that are costly to manufacture and often delay the assembly process.

2. Templates are often difficult to align properly on work pieces.

3. Templates are large and heavy, sometimes causing physical strain and injury.

4. Storing templates consumes valuable floor space.

POSITIONED BY IRIS

1. With Iris, engineering changes are passed to the shop floor in minutes because the system simply references an updated CAD file to accurately guide assemblers.

2. The Iris Spatial Positioning System determines the work piece’s position in 3D space and projects a laser outline indicating exact placement locations for parts – even on the most complex pieces.

3. Iris eliminates the use of templates, thereby upholding employee safety.

4. Because Iris is so compact and portable, it’s easily moved between assembly areas and requires no storage.

Weldment

Eliminate use of templates.

Assemble parts up to 60% faster.

Detect errors early in the process; prevent costly rework.

Eliminate use of templates.

Ensure assemblies match CAD designs precisely.

Detect errors early in the process; prevent costly rework.

Eliminate manual inspection; reduce labor costs.

Eliminate use of templates.

Assemble parts up to 60% faster.

Design changes require new templates that are costly to manufacture and often delay the assembly process.

Templates are often difficult to align properly on work pieces.

Templates are large and heavy, sometimes causing physical strain and injury.

Storing templates consumes valuable floor space.

With Iris, engineering changes are passed to the shop floor in minutes because the system simply references an updated CAD file to accurately guide assemblers.

The Iris Spatial Positioning System determines the work piece’s position in 3D space and projects a laser outline indicating exact placement locations for parts – even on the most complex pieces.

Iris eliminates the use of templates, thereby upholding employee safety.

Because Iris is so compact and portable, it’s easily moved between assembly areas and requires no storage.

Weldment

Laser Projector

Eliminate manual inspection; reduce labor costs.

Ensure assemblies match CAD designs precisely.

Detect errors early in the process; prevent costly rework.

Eliminate use of templates.

Assemble parts up to 60% faster.

Spatial Locator

Ensure assemblies match CAD designs precisely.

Detect errors early in the process; prevent costly rework.

Eliminate use of templates.
SPATIAL LOCATOR

- **Length:** 1210 mm (48 in.)
- **Weight:** 6.5 kg (14 lbs.)
- **Range:** < 6 m (20 ft.)
- **Resolution:** 0.125 mm (0.005 in.)
- **Power:** 115-240 VAC 50/60 Hz

LASER PROJECTOR

- **Length:** 622 mm (24.5 in.)
- **Height:** 330 mm (13 in.)
- **Depth:** 175 mm (7 in.)
- **Range:** < 12 m (39 ft.)
- **Projection Angle:** 60 degrees
- **Accuracy:** <0.38 mm @ 6 m (0.014 in. @ 20 ft.), <0.76 mm @ 12 m (0.030 in. @ 39 ft.)
- **Power:** 115-240 VAC 50/60 Hz

VIRTEK VISION INTERNATIONAL INC.

785 Bridge Street, Waterloo, Ontario, N2V 2K1, Canada

T +1 519 746 7190 F +1 519 746 3383

www.virtek.ca

SPECIFICATIONS

IRIS SOFTWARE AND USER INTERFACE

- **Controller:** 32 and 64 bit compatible
- **OS:** Windows
- **Interface:** Ethernet, USB and parallel
- **Interactions:** Control panel, probe, keyboard

ELIMINATE PRODUCTION EXPENSE AND DELAYS CAUSED BY USING TEMPLATES

1. **Design changes require new templates that are costly to manufacture and often delay the assembly process.**

 - **With Iris, engineering changes are passed to the shop floor in minutes because the system simply references an updated CAD file to accurately guide assemblers.**

2. **Templates are often difficult to align properly on each piece.**

 - **The Iris Spatial Positioning System determines the work piece’s position in 3D space and projects a laser outline indicating exact placement locations for parts – even on the most complex pieces.**

3. **Templates are large and heavy, sometimes causing physical strain and injury.**

 - **Iris eliminates the use of templates, thereby upholding employee safety.**

4. **Storing templates consumes valuable floor space.**

 - **Because Iris is so compact and portable, it’s easily moved between assembly areas and requires no storage.**

Weldment

- **Spatial Locator**
- **Laser Projector**
- **Iris eliminates the use of templates.**
- **Positioned by Iris**
- **Assemble parts up to 60% faster.**
- **Detect errors early in the process; prevent costly rework.**
- **Eliminate use of templates.**
- **Eliminate manual inspection; reduce labor costs.**
- **Ensure assemblies match CAD designs precisely.**

INTRODUCING VIRTEK’S IRIS SPATIAL POSITIONING SYSTEM

The Iris™ Spatial Positioning System combines breakthrough technology with laser projection to create a new precision assembly technique called virtual tooling.

Iris SPS locates objects in 3D space and quickly locks onto CAD-specified assembly positions without the need for costly tooling or optical targets. The Iris system is compact and easy-to-use for improved productivity, quality and safety on the shop floor.

Synchronize Manufacturing and Design

The Iris system eliminates differences between “as built” and “as designed” because assemblers are always working with the most current CAD file. There are no delays when design changes are made by engineering so, as a result, engineering and manufacturing are always in sync.
IMPROVED ACCURACY, QUALITY AND WORKFLOW

Iris SPS is game-changing technology for manufacturers of highly engineered, low volume, highly tooled products.

Accurate
Iris Spatial Positioning System quickly locates the exact placement area for assembly. Any movement of the Iris system or the work piece will automatically re-position the projection.

Intuitive
The Iris system is easy to learn and operate. It is designed for use in the flow of normal operations and validated on the shop floor. Within the application, visual cues and tool tips are presented to guide operators through each action with ease.

Adaptable
The Iris Spatial Positioning System can accommodate even the most complex assemblies by projecting on difficult-to-reach locations. It accelerates the assembly process by eliminating the wait for markup and/or templates at the onset of a project or when design changes are made.

Iris Spatial Positioning System
• precisely locates work piece in 3D space
• quickly locks onto CAD datum references
• accurately projects 3D positions – for precise assembly

In addition, the entire system:
• is compact, portable and easy to use
• has no special safety or tooling requirements
HOW IT WORKS

The Iris Spatial Positioning System employs photogrammetric triangulation. It involves three things working together: the laser projector, the spatial locator, and the work piece itself. With an accurate understanding of the work piece's location in 3D space, the system can project assembly locations on any of its surfaces.

The virtual tooling process begins with the engineer's CAD model.
Alignment datums are chosen based on the design’s callouts to ensure accuracy and repeatability. The assembler uses a small probe to touch the first feature and activate the position capture. Advanced software identifies these datums for precise location of work piece parts, projecting a highly accurate 3D laser reference to help guide users. Once Iris has “locked onto” its datums, any movement of the Iris system or the work piece will immediately trigger a re-alignment to correct as-designed CAD specifications.

Laser patterns are sequenced to ensure the correct assembly order is upheld.
Laser projection guarantees the right part is in the right location and with the correct orientation.
ADVANCED SOFTWARE, USER-FRIENDLY INTERFACE

The Iris system is sophisticated and remarkably intuitive, built for hassle-free operation by engineers, managers and assemblers.

The User Interface

• Minimalist operator interface speeds training and streamlines work, reducing operator error
• One click gives immediate access to all needed information
• Visual cues and tool tips clearly guide operator through necessary actions
• Projected text guides the operator through workflow
• With a fully-integrated remote and probe interface, there’s never a need to return to the workstation
SPECIFICATIONS

SPATIAL LOCATOR
Length: 1210 mm (48 in.)
Width: 152 mm (6 in.)
Height: 400 mm (16 in.)
Weight: 6.5 kg (14 lbs.)
Resolution: 0.125 mm (0.005 in.)
Power: 115-240 VAC 50/60 Hz
Field of View: 70 degrees

LASER PROJECTOR
Length: 622 mm (24.5 in.)
Height: 330 mm (13 in.)
Depth: 175 mm (7 in.)
Range: < 12 m (39 ft.)
Projection Angle: 60 degrees
Accuracy: <0.38 mm @ 6 m (0.014 in. @ 20 ft.), <0.76 mm @ 12 m (0.030 in. @ 39 ft.)
Power: 115-240 VAC 50/60 Hz

IRIS SOFTWARE AND USER INTERFACE
Controller: 32 and 64 bit compatible
OS: Windows 7
Interface: Keyboard, remote and probe
Interaction: Controlled, guided processes

ISO 9001 certified since 2008

Eliminate Production Expense and Delays
Caused by Using Templates

1. Design changes require new templates that are costly to manufacture and often delay the assembly process.
2. Templates are often difficult to align properly on each piece.
3. Templates are large and heavy, sometimes causing physical strain and injury.
4. Storing templates consumes valuable floor space.

Positioned Using Templates

Positioned by IRIS

With IRIS, engineering changes are passed to the shop floor in minutes because the system simply references an updated CAD file to accurately guide assemblers.

The Iris Spatial Positioning System determines the work piece’s position in 3D space and projects a laser outline indicating exact placement locations for parts – even on the most complex pieces.

Iris eliminates the use of templates, thereby upholding employee safety.

Because Iris is so compact and portable, it’s easily moved between assembly areas and requires no storage.

Ensure assemblies match CAD designs precisely.

Detect errors early in the process; prevent costly rework.

Eliminate use of templates.

Eliminate manual inspection; reduce labor costs.

Ensure assemblies match CAD designs precisely.

VIRTEK VISION INTERNATIONAL, INC.
760 Bridge Street, Waterloo, Ontario N2V 2K1 Canada
T +1 519 746 7190 F +1 519 746 3383
www.virtek.ca
SPATIAL POSITIONING SYSTEM

Breakthrough Technology for Assembly Processes

Accelerate and Error Proof the Assembly Process by Eliminating Manual Measuring, Marking and Fitting

MEASURED BY HAND

Placement is usually accurate when measured in straight lines on flat surfaces. Contours and curve surfaces introduce errors and invite misalignment.

Fitting requires skilled workers who are more costly and difficult to find.

When assembly is in progress, determining the accuracy of part alignment is difficult and misaligned welded parts are always costly to fix.

POSITIONED BY IRIS

Part position is taken directly from CAD data and projected onto the workpiece for exact as-designed placement.

Iris is designed using state-of-the-art 3D technology and laser-accurate software that pinpoints locations on complex surface shapes.

Iris’ user interface requires no prior experience. Visual cues guide operators through each action and projected text indicators identify part numbers for accuracy.

Iris examines parts for positional accuracy and provides instant feedback to eliminate work-in-process errors.

Part position is measured and marked by hand, using workpiece edges and perimeters - an inaccurate and time-consuming process.

Part position is usually accurate when measured in straight lines on flat surfaces. Contours and curve surfaces introduce errors and invite misalignment.

Fitting requires skilled workers who are more costly and difficult to find.

When assembly is in progress, determining the accuracy of part alignment is difficult and misaligned welded parts are always costly to fix.